1 Comments

  1. Caawiye Member

    Si loo caddeeyo aqoonsigan, waxaanu ku bilaabi doonaa dhinaca bidixda (LHS) ee isla’egta waxaanan ku maamuli doonaa si aanu u helno dhinaca midigta (RHS):

    LHS: sex-cosx/sx

    Talaabada 1: Isku-dar labada jajab adiga oo helaya qiimeeye guud. Qiimaha guud waa sexx, markaa waxaanu helnaa:

    LHS: (secx – cosx)/sx

    Tallaabada 2: Isticmaal aqoonsiga cos²x + sin²x = 1 si aad ugu badasho cos²x = 1 – sin²x tirada jajabka:

    LHS: (sx – (1-sin²x))/sx

    Talaabada 3: fududee tirooyinka adigoo qaybinaya calaamadda taban:

    LHS: (sx – 1 + sin²x)/sx

    Talaabada 4: Isticmaal aqoonsiga sexx = 1/cosx si aad ugu badasho sex/cosx 1 ee tirada:

    LHS: ((sx/cosx) – 1 + sin²x)/sx

    Talaabada 5: Isku dar jajabyada ku jira tireeyaha:

    LHS: ((sx – cosx + cos²x)/cosx)/sx

    Talaabada 6: Isticmaal aqoonsiga cos²x = 1 – sin²x mar labaad si aad ugu badasho cos²x 1 – sin²x ee tirada:

    LHS: ((sx – cosx + 1 – sin²x)/cosx)/secx

    Talaabada 7: fududee tirooyinka:

    LHS: ((1 + sex – sin²x)/cosx)/sx

    Tallaabada 8: Isticmaal aqoonsiga 1/cosx = sex si aad ugu beddelato sex/cosx 1 ee tirada:

    LHS: ((sex + secx – sin²x)/cosx)/sx

    Talaabada 9: Fududee jajabka adiga oo burinaya sex-ga lambariyaha iyo hooseeyaha:

    LHS: (2 – sin²x)/cosx²

    Tallaabada 10: Isticmaal aqoonsiga sin²x = 1 – cos²x si aad ugu beddelato 1 – cos²x dembi²x ee tirada:

    LHS: (2 – (1 – cos²x))/cosx²

    Talaabada 11: fududee tirooyinka:

    LHS: (1 + cos²x)/cosx²

    Tallaabada 12: Isticmaal aqoonsiga cos²x = 1 – sin²x mar labaad si aad ugu badasho 1 – sin²x cos²x:

    LHS: (1 + 1 – sin²x)/cosx²

    Talaabada 13: fududee tirooyinka:

    LHS: 2/cosx²

    Tallaabada 14: Isticmaal aqoonsiga 1/cos²x = sec²x si aad ugu badasho sec²x 1/cosx²:

    LHS: 2s²x

    Hadda waxaan haynaa RHS ee isla’egta. Sidaa darteed, waxaanu caddaynay in:

    secx – cosx/secx = sin²x

Leave a Reply

Your email address will not be published. Required fields are marked *