Chapter1 (Q3) Use the identities for the cosine of a sum or difference to write each expression as a function:a. \(Cos(0°+θ)\)b. \(Cos(90°+θ)\)c. \(Cos(180°+θ) \)d. \(Cos(270°+θ) \)

1 Answers
caawiyepanel
August 1, 2022, 11:47 pm
Solution a. \(Cos(0°+θ)=Cos0°cosθ-Sin0°sinθ←1×cosθ-0×sinθ \)= b. \(Cos(90°+θ)=Cos90°cosθ-Sin90°sinθ←0×cosθ-1×sinθ \)= c. \(Cos(180°+θ)=Cos180°cosθ-Sin180°sinθ←-1×cosθ-0×sinθ \)= d. \(Cos(270°+θ)=Cos270°cosθ-Sin270°sinθ←0×cosθ-(-1)×sinθ \)= Solution: a. \(Cos(0°+θ)=Cos0°cosθ-Sin0°sinθ 1×cosθ-0×sinθ=cosθ \) b. \( Cos(90°+θ)=Cos90°cosθ-Sin90°sinθ 0×cosθ-1×sinθ=sinθ \) c. \( Cos(180°+θ)=Cos180°cosθ-Sin180°sinθ -1×cosθ-0×sinθ=-cosθ.\) d. /(Cos(270°+θ)=Cos270°cosθ-Sin270°sinθ←0×cosθ-(-1

Leave Answer

You must be logged in to answer.