1 Comments

  1. Caawiye Member

    Solution

    a.\(Tan(-7π/12)←Tan(π/3+π/4)←-Tan(60°+45°).

    Tan (a+b)= (Tana+Tanb)/(1-TanaTanb)←(Tan60°+Tan45°)/(1-Tan60°Tan45°)←(√3+1)/(1-√3 ×1 \))=

    b. \( Sin40°cos50°+sin40°sin50°=Sin (40°+50°\))=

    c. \((Tan80°+Tan55°)/(1-Tan80°Tan55°)←Tan (a+b)←Tan (80°+55° \))=

    d. \((Tan80°+Tan(-55°))/(1-Tan80°Tan(-55°))←Tan (80°-(-55°)←Tan (80°+55° \))=

    e. \((Tan100°+Tan(80°))/(1-Tan100°Tan(80°))←Tan (100°+80° \))←=

    f. \((Tan 5π/12+Tan π/4)/(1-Tan 5π/12 Tan π/4)←Tan( 5π/12+π/4)←Tan (75°+45° \))=

    g. \(Sin π/5 Cos 3π/10 cos π/4+Cos π/5 sin 3π/10 ←Sin (a+b)=Sin (π/5+3π/10)=Sin (36+54 \))=

    Solution

    a. /(Tan (√3+1)/(1-√3)=-(2-√3)./)

    b./( Sin (40°+50°)=Sin90°=1 /)

    c. /(Tan (80°+55°)=Tan135°=-1 /)

    d. /( Tan (80°+55°)=Tan135°=-1. /)

    e./( Tan (100°+80°)←=Tan180° /)

    f. /(Tan120°=-√3. /)

    g. /( Sin (36+54)=Sin90°=1. /)

Leave a Reply

Your email address will not be published. Required fields are marked *