Chapter1 (Q8) Find each of the following a)\(Cosθ, given Cos2θ=1/2, and θ terminates in quadrant 2.\)b). \(Cosx, given Cos2x=-5/12, With π/2

1 Answers
caawiyepanel
August 1, 2022, 11:49 pm
Solution \(COS2θ=2Sin^2 θ-1 ∴Cosθ=√((Cos2θ+1)/2) ←√((1/2+1)/2) √((3/2)/2) √(3/4 \)) = Solution \(COS2θ=2Sin^2 θ-1 ∴Sinx=√((Cos2x+1)/2) ←√((-5/12+1)/2) √((7/12)/2) =- √(7/24) . c.\( Cosx, given Cos2x=2/3, With π<x<3π/2 \) Solution \(COS2θ=2Sin^2 θ-1 ∴Cosx=√((1-cos2x)/2) ←√((1-2/3)/2) √((1/3)/2 \))= Solution a. /(COS2θ=2Sin^2 θ-1 ∴Cosθ=√((Cos2θ+1)/2) ←√((1/2+1)/2) √((3/2)/2) √(3/4) =- √3/2. /) Solution b. /( COS2θ=2Sin^2 θ-1 ∴Sinx=√((Cos2x+1)/2) ←√((-5/12+1)/2) √((7/12)/2) =- √(7/24) ./) Solution c. /(COS2θ=2Sin^2 θ-1 ∴Cosx=√(

Leave Answer

You must be logged in to answer.