1 Answers
Solution
\(COS2θ=2Sin^2 θ-1
∴Cosθ=√((Cos2θ+1)/2) ←√((1/2+1)/2) √((3/2)/2) √(3/4 \)) = Solution
\(COS2θ=2Sin^2 θ-1
∴Sinx=√((Cos2x+1)/2) ←√((-5/12+1)/2) √((7/12)/2) =- √(7/24) .
c.\( Cosx, given Cos2x=2/3, With π<x<3π/2 \)
Solution
\(COS2θ=2Sin^2 θ-1
∴Cosx=√((1-cos2x)/2) ←√((1-2/3)/2) √((1/3)/2 \))= Solution
a. /(COS2θ=2Sin^2 θ-1
∴Cosθ=√((Cos2θ+1)/2) ←√((1/2+1)/2) √((3/2)/2) √(3/4) =- √3/2. /)
Solution
b. /( COS2θ=2Sin^2 θ-1
∴Sinx=√((Cos2x+1)/2) ←√((-5/12+1)/2) √((7/12)/2) =- √(7/24) ./) Solution
c. /(COS2θ=2Sin^2 θ-1
∴Cosx=√(
Leave Answer
You must be logged in to answer.